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Electromagnetic vector potentials and the scalarization of sources in a nonhomogeneous mediu
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Electromagnetic source equivalence is considered for the case of an isotropic nonhomogeneous medium.
Equivalent transformations of the transversally oriented~with respect to a chosen axis! current sources into
longitudinally oriented sources are derived. They allow the reduction of any given distribution of arbitrarily
oriented sources to an equivalent distribution of single-component parallel electric and magnetic sources. The
technique is referred to as source scalarization; and, together with a recently developed vector potential field
representation in an isotropic, nonhomogeneous, lossy medium, which may contain sources of arbitrary orien-
tation, it is applied to produce a complete description of the field in terms of two scalar wave potentials. The
proposed source scalarization technique is illustrated by a simple numerical example: the radiation of an
electromagnetic pulse by an asymmetrical loop of magnetic currents.
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I. INTRODUCTION

It is well known that there are certain sources, e.g.
small loop of electric current and its equivalent magne
dipole, which produce the same field. In general, two set
sources are considered equivalent with respect to a regio
interestV if they produce identical fields in it. So far, th
studies on electromagnetic source equivalence have
limited mostly to time-harmonic fields in homogeneous m
dia. For example, the equivalence relations between ele
current densities on one hand and magnetic current dens
on the other have been known for some decades@1#. They
are based on the Helmholtz equation for the electric fi
vector E or the magnetic field vectorH ~it is noted that
throughout the paper vectors appear in bold face, and
vectors such asn̂ are identified by carrying â) and lead to
field equivalence outside the volume of the sources. M
recently, it was shown@2,3# that a given electric curren
source can be decomposed into a part radiating a transv
electric~TE! wave and a part radiating a transverse-magn
~TM! wave with respect to a chosen~or distinguished! axis
n̂. This decomposition is based on the equivalence derive
Ref. @1# and is also limited to homogeneous media.

Here, we focus on a problem which, to the best of o
knowledge, has not been addressed so far. This is the re
tion of a given distribution of electric and magnetic curre
densities of arbitrary orientation to equivalent sources in
form of single-component electric and magnetic current d
sities parallel to a distinguished axisn̂. The technique is
referred to as source scalarization. An important merit of t
technique is that it is valid innonhomogeneousisotropic me-
dia. It is applicable not only to the direct field analysis
terms ofE andH but also to the analysis based on vector a
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scalar potentials. The transformations allowing the scalar
tion of the electromagnetic sources are derived using
vector-potential representation of the field. The fields due
the original and the equivalent sources are shown to be id
tical everywhere, the locations of the sources included.

The significance of the problem of source scalarizat
stems from its relation to the electromagnetic~EM! field sca-
larization ~or TE/TM field decomposition! with respect to a

distinguished axisn̂ in linear media. The purpose of the fiel
scalarization is to represent the field in terms of two sca

potential functions, e.g., a pair ofn̂-oriented magnetic and

electric vector potentialsA5n̂An andF5n̂Fn @4#. A similar
technique uses a pair ofn̂–oriented magnetic and electri
Hertz potentials@5#. These scalar functions, e.g.,An andFn ,
satisfy the wave equation in the time domain or the Hel
holtz equation in the frequency domain and are, therefo
called scalar wave potentials. TheAn potential represents a
TMn field and theFn potential represents a TEn field. The
total field is thus given as the superposition of the TMn and
TEn fields, which are commonly referred to as field mode

In a homogeneous region, the direction of the magne
and electric vector potentials is that of the electric and m
netic current densities, respectively. Thus, if all sources
parallel ton̂, a complete solution in terms of twodecoupled
scalar wave potentials is possible@4–6#. It can be shown that
problems involving media whose constitutive parameters
functions of one coordinate only, e.g., alongn̂, can also be
reduced to the analysis of two decoupled modes, TMn and
TEn @7,8#, if the sources are parallel ton̂. Using the proposed
source scalarization technique, the sources in the above
problems can be transformed to achieven̂ orientation. Sub-
sequently, the analysis can be carried out either for then
mode or for the TMn mode. The advantages of solving
single scalar wave equation as opposed to the Maxwell eq
tions for the field vectors are obvious.

The proposed source scalarization technique is in gen
©2002 The American Physical Society14-1
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valid in a nonhomogeneous medium where the gradient
the constitutive parameters are not restricted to any partic
axis. This makes it applicable to problems of a more gen
type than those described above where a solution can
constructed using either the Maxwell equations or suita
scalar wave potential techniques@9,10#. In the latter, the so-
lution is obtained in terms of twocoupledscalar wave po-
tentials.

The field and source scalarization in terms of scalar w
potentials is derived and demonstrated in the time-dom
making the assumption of an instantaneous response o
medium. However, all equations are in principle direc
transferable into the frequency domain, where proper c
can be taken of the frequency-dependent constitutive par
eters; such a frequency-domain approach became avai
recently@11#.

II. VECTOR POTENTIALS AND SOURCES IN A
NONHOMOGENEOUS MEDIUM

A. General vector potential equations

Here, we propose a vector potential formalism for t
case of an isotropic nonhomogeneous lossy medium, w
may involve electric and magnetic currents of arbitrary
rections. It gives a more general definition of the sources
the vector potentials and serves as a starting point toward
scalarization of EM sources. It also gives explicitly the ne
essary conditions for the EM field scalarization and sho
how the coupling between the vector potential compone
occurs in a nonhomogeneous medium.

For a linear EM problem, one can use the superposi
principle and decompose the EM field accordingly. The p
for which

“•BA50 ~1!

holds is called theA field, (EA,HA). TheF field, (EF,HF), is
that which fulfills

“•DF50. ~2!

In general, the constitutive relations for time-depend
fields are given in terms of integrals of convolution type
fulfill the requirement of causality@see, for example, Ref
@12##. In the following analysis, however, we use the tim
dependent constitutive relations of an isotropic, nonhomo
neous medium in their instantaneous form. We have

D~x,t !5e~x!E~x,t !,

B~x,t !5m~x!H~x,t !,

Jse
~x,t !5se~x!E~x,t !,

Jsm
~x,t !5sm~x!H~x,t !, ~3!

wheree is the dielectric permittivity,m is the magnetic per-
meability, se is the specific electric conductivity,sm is the
specific magnetic conductivity of the medium, all depend
on the position vectorx5(x,y,z). It is briefly noted that the
04661
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magnetic conductivity, while a fictitious property of matte
is of considerable value in computational electrodynam
when dispersion-free media are simulated and fictitious p
fectly matched absorbers are constructed@13#. In the follow-
ing derivations, it will be understood that the field and
associated potentials are functions of space and time, w
the constitutive parameters are functions of space only.
local nature of the relations in Eq.~3! means that the medium
has instantaneous, and thus nonphysical, response. Suc
assumption is often made in transient computational al
rithms for media whose constitutive parameters are ne
dispersion-free in the frequency band of interest.

In view of Eqs.~1!–~3!, the magnetic vector potentialA
and the electric vector potentialF are introduced as

mHA5“3A,

eEF52“3F. ~4!

Equations~1! and~2! require that the respective charge de
sities vanish,rm

A[0, re
F[0. We add for clarity that while

the magnetic charges and magnetic currents are consid
fictitious EM sources, they play an important role in sol
tions based on the equivalence principle and EM dua
@14#. According to the continuity relations, the following re
strictions are imposed on the current sources associated
the A field and theF field:

“•Jm
A50,

“•Je
F50, ~5!

whereJm
A is the magnetic current density which appears a

source of theA field, and Je
F denotes the electric curren

density associated with theF field. Thenrm
A[0 andre

F[0
hold indeed if zero initial conditions are assumed for t
charge distributions:rm

A
(t50)50, re

F
(t50)50. Thus,Jm

A and
Je

F , if represented as the curls of given vector fields,
admissible sources ofA and F, respectively. The curren
sources of an EM problem can thus be represented as

Je5Je
A1Je

F ,

Jm5Jm
A1Jm

F , ~6!

where the electric current sources of theA field, Je
A , and the

magnetic current sources of theF field, Jm
F , are not subjected

to any conditions, whileJm
A andJe

F are a subject to the con
ditions given in Eq.~5!. Here, it should be noted that th
classical interpretation is that the sources ofA can be only
electrical currents~i.e., Jm

A50), and the sources ofF can be
only magnetic currents~i.e., Je

F50), which is only a special
case of Eq.~5!.

The above discussion permits a generalization of the v
tor potential sources. In addition toJe

A and Jm
F , a set of

sources (Je
s , Jm

s ) is introduced via Helmholtz’ theorem

Je
s5“3H2“Pe ,

Jm
s 52“3E2“Pm , ~7!
4-2
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whereH, E, Pe and Pm are given functions of space an
time. The current densitiesJe

s andJm
s have their divergence

free part clearly distinguished from their curl-free part. T
vectorsH andE can be interpreted as an incident magne
and electric field, respectively, while the scalar functionsPe
andPm are representative of conservative fields. We refe
the functionsH, E, Pm , andPe asprimary sources, while
Je

s andJm
s are called thesecondary sources. The currentsJe

A

andJm
F , which are not given in terms of a solenoidal and

gradient part, will be distinguished from the seconda
sources by referring to them simply ascurrent sources.

The divergence-free secondary sources

Je
sF5“3H,

Jm
sA52“3E ~8!

are introduced as admissible sources ofF and A, respec-
tively, according to Eq.~5!. The curl-free secondary source

Je
sA52“Pe ,

Jm
sF52“Pm ~9!

can only be associated with theA field and with theF field,
respectively. Thus, theA field and theF field have their
sources generalized to include the primary sources in
form

Je
A1Je

sA5Je
A2“Pe , Jm

sA52“3E, A field,

Jm
F 1Jm

sF5Jm
F 2“Pm , Je

sF5“3H, F field. ~10!

Both source sets, the current sources (Je
A , Jm

F ) and the
secondary sources (Je

s , Jm
s ), are included in the time-domai

Maxwell equations

TeE5“3H2Je
s2Je

A ,

TmH52“3E2Jm
s 2Jm

F . ~11!

Here, the linear scalar differential operators in timeTe and
Tm are given by

Te5e] t1se ,

Tm5m] t1sm . ~12!

The operatorsTe and Tm , convenient for use in the time
domain, also allow the direct transfer of the time-doma
analysis presented below into the frequency domain by
placing Te with j vẽ, and Tm with j vm̃. Therein, ẽ is the
complex dielectric permittivity andm̃ is the complex mag-
netic permeability.

As a result of the substitution of Eq.~4! into Eq.~11!, the
following field-to-potential representations are obtained

E52TmAm2“F2“3Fe1E,

H52TeFe2“C1“3Am1H; ~13!
04661
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TeE5“3~“3Am2TeFe!2Je
A1“Pe ,

TmH5“3~“3Fe1TmAm!2Jm
F 1“Pm . ~14!

During the derivations, the modified vector potentials

Am5m21A,

Fe5e21F ~15!

have been introduced. From the equivalence of Eqs.~13! and
~14!, the generalized Lorenz gauge is derived as

2TeF5“•Am1Pe ,

2TmC5“•Fe1Pm . ~16!

The governing equations of the modified vector potenti
are, henceforth, obtained as

“

2Am2TmeAm1~“Te!3Fe2~“Te!T e
21~“•Am1Pe!

52Je
A2Te E,

“

2Fe2TmeFe2~“Tm!3Am2~“Tm!T m
21~“•Fe1Pm!

52Jm
F 2TmH, ~17!

whereT e
21 andT m

21 are the inverse of the operators defin
in Eq. ~12!. In Eq. ~17!, Tme is a second-order differentia
operator in time given by

Tme5TmTe5me] tt1~esm1mse!] t1sesm . ~18!

The vector operators (“Te) and (“Tm) are the gradients o
the operators defined in Eq.~12!:

~“Te!5~“e!] t1~“se!,

~“Tm!5~“m!] t1~“sm!, ~19!

so that, for example,

~“Te!F5~“e!] tF1~“se!F,

~“Te!3Fe5~“e!3] tFe1~“se!3Fe . ~20!

These vector operators reflect the influence of the mate
nonhomogeneities. In a homogeneous medium, wh
(“Te)5(“Tm)50, Eq. ~17! simplifies to two decoupled
equations forAm andFe , as per

DAm52Je
A2Te E,

DFe52Jm
F 2Tm H. ~21!

Therein,D5“

22Tme is a wave operator that generalizes t
d’Alembertoperator (“22me] tt). In view of Eqs.~17! and
~21!, the potential sources are now defined as
4-3
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GA5Je
A1Te E,

GF5Jm
F 1Tm H. ~22!

It is important to note that the scalar primary sourcesPe
and Pm affect neither the left-hand side nor the sources
Eq. ~21! for the modified vector potentialsAm and Fe in a
homogeneous medium. This means that the currents in
~9! are nonradiating sources in the sense that they do
affect the EM field outside their own volume. However, th
do affect the field vectors locally as seen from Eq.~14!, as
well as from Eqs.~13! and~16!. This behavior conforms with
the theory of nonradiating sources in a homogeneous
dium @15#. If the medium is not homogeneous (“TeÞ0
and/or“TmÞ0), Pe , and Pm affect the left-hand sides o
Eq. ~17!. In such a case, the secondary sources~9! can not be
classified as nonradiating.

The formalism based on Eq.~17! involves both vector
potentialsAm andFe with their six components. It is a mor
general representation of the EM field in terms of vec
potentials than the commonly used magnetic vector poten
A. Unlike the latter, the formalism can handle~generally!
nonhomogeneous, lossy, isotropic dielectric-magnetic me
which involve both electric and magnetic current densities
arbitrary orientations, and this constitutes a different res
The solution procedure involves two coupled second-or
vector equations and its computational advantages will
come apparent after a scalarization~reduction to two scalar
equations! has been carried out.

B. Scalarization of the vector potential equations

Let us assume that the constitutive parameters depen
a single variable along the axisn̂ in the local coordinate
system (n̂,t̂1 ,t̂2), where n̂5 t̂13 t̂2. Then both vector op-
erators (“Te) and (“Tm) are parallel ton̂. This corresponds
to a type of nonhomogeneity often encountered in pract
problems: a locally flat interface between two materia
From Eq. ~17! it is obvious that in this case single
component vector potentials defined asA5Amnn̂ and F
5Fenn̂ are not mutually coupled as the cross products in
left-hand side vanish. Moreover, they do not give rise
vector potential components tangential to the material in
face since the vector operators (“Te) and (“Tm) have only
n̂ components. They are sufficient by themselves to provid
complete field description.

The orientation of the source terms determines the or
tation of the vector potentials as seen from Eq.~17!. The
orientation of the vector potentials is also important wh
their boundary conditions must be satisfied at conduc
edges. The boundary conditions for the vector potential co
ponents, which are tangential to a perfectly conducting e
~the term perfect conductor referring to both perfect elec
conductor and perfect magnetic conductor!, are well posed,
while the boundary conditions for the vector potential co
ponents, which are transversal to the edge, are ill posed@9#.

In summary, an EM problem can be described by a pai
decoupled collinear vector potentials (Amn ,Fen)n̂ in regions
04661
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where:~i! all sources (Je
A , Jm

F , E, andH) are parallel ton̂;
~ii ! the gradients of the constitutive parameters are paralle
n̂; and~iii ! any perfectly conducting edges are parallel ton̂.

Such regions are said to have a distinguished axisn̂. The
source scalarization technique proposed here allows the
duction of electric and magnetic currents of any distributi
and orientation to the formJe

A5Jen
A n̂, Jm

F 5Jmn
F n̂, E5Enn̂,

andH5Hnn̂, thus ensuring condition~i!. If all of the above
conditions are observed, the two coupled vector equation
Eq. ~17! reduce to two decoupled scalar equations for
wave potentialsAmn andFen :

DAmn2~]nTe!T e
21~]nAmn1Pe!52Jen

A 2TeEn ,

DFen2~]nTm!T m
21~]nFen1Pm!52Jmn

F 2TmHn ,
~23!

where]n represents then̂ component of the“ operator,“
5]nn̂1“t . For example, problems involving homogeneo
or stratified media are readily reduced to this form if th
sources have been scalarized to satisfy condition~i!.

Conditions ~ii ! and ~iii ! are related to the influence o
implicit EM sources induced at material nonhomogeneit
and perfectly conducting edges. The implicit sources are
ferent from the explicitly defined EM sources (Je

A , Jm
F , E,

andH) as they are dependent on the field that induces th
i.e., they depend onAmn andFen . For example, the implicit
current densitiesJe

i and Jm
i in a nonhomogeneous medium

are defined according to Eq.~17! as

~“Te!3Fenn̂2~“Te!T e
21~]nAmn1Pe!5Je

i ,

2~“Tm!3Amnn̂2~“Tm!T m
21~]nFen1Pm!5Jm

i . ~24!

If conditions ~ii ! and ~iii ! are fulfilled the implicit currents
are parallel ton̂. This, together with condition~i!, ensures
the excitation of single-componentn̂-directed decoupled
vector potentials.

If conditions ~ii ! and ~iii ! are violated, i.e.,“Te3n̂Þ0
and/or“Tm3n̂Þ0, then the implicit currents are transvers
to the axisn̂ associated with the scalar wave potentials. Li
the explicitly defined sources, the implicit current densit
can be equivalently reduced to sources parallel ton̂, which
are subsequently plugged in the right-hand side of Eq.~23!.
Thus a solution in terms of the two scalar wave potenti
Amn andFen can be constructed even for a generally nonh
mogeneous medium that does not have a distinguished
Obviously, in this caseAmn andFen are coupled.

It is now apparent that, regardless of the complexity of
nonhomogeneous medium, the reduction of an EM prob
to two scalar wave equations for the pair (Amn ,Fen)n̂ is
possible, and it requires a source scalarization techni
which can equivalently transform all explicit and implic
currents into sources parallel ton̂.
4-4



s

h

a
l
.
po

re
y
ry

u

n
riv

r

fo
t

es

d in

n-
r

d,
f

i-
po-
q.

or-
if-

in

ELECTROMAGNETIC VECTOR POTENTIALS AND THE . . . PHYSICAL REVIEW E 66, 046614 ~2002!
III. SCALARIZATION OF SOURCES

The representation of the secondary sources in term
primary sources via Helmholtz’ theorem, Eq.~7!, is not
unique. Thus, we can define the primary sources in suc
way that the transversal currents (Jet

o ,Jmt
o ) of the original

problem are equivalently replaced by a pair of longitudin
potential sources (Gn

A ,Gn
F)n̂. Of course, the longitudina

original currents (Jen
o ,Jmn

o ) do not require transformation
This ensures the excitation of single-component vector
tentials (Amn ,Fmn)n̂ in the analyzed volume.

The original transverse currents,Jet
o andJmt

o , can be ex-
pressed as a superposition of equivalent longitudinal cur
sources (Je

e5Jen
e n̂, Jm

e 5Jmn
e n̂) and equivalent secondar

sources, which are given in terms of longitudinal prima
sourcesE5Enn̂, H5Hnn̂, as per

Jet
o 5Jen

e n̂1“3Hnn̂2“Pe ,

Jmt
o 5Jmn

e n̂2“3Enn̂2“Pm . ~25!

Notice that the presence of the equivalent longitudinal c
rent sourcesJe

e5Jen
e n̂ and Jm

e 5Jmn
e n̂ is required in order to

apply the three-dimensional~3D! Helmholtz’ representation
~7! to the case of transversal currents. For Eq.~25! to hold
identically, we must have

Jet
o 5“t3Hnn̂2“tPe ,

Jmt
o 52“t3Enn̂2“tPm , ~26!

Jen
e 5]nPe ,

Jmn
e 5]nPm . ~27!

From Eq.~26!, the relations between the primary equivale
sources and the transversal original currents are then de
as

“t
2Hn52~“t3Jet

o !n ,

“t
2En5~“t3Jmt

o !n , ~28!

“t
2Pe52“t•Jet

o ,

“t
2Pm52“t•Jmt

o . ~29!

The 2D Poisson equations in Eqs.~28! and~29! are comple-
mented by suitable boundary conditions for the prima
sources. The boundary conditions forEn , Hn , Pe , andPm at
electric and magnetic walls are easily derived from those
the field vectors. They appear as homogeneous Dirichle
Neumann boundary conditions. OncePe and Pm are found
from Eq. ~29!, the longitudinal equivalent currents,Jen

e and
Jmn

e , are calculated via Eq.~27!. Eqs. ~27!–~29! define
uniquely the equivalent longitudinal potential sourc
(Gn

A ,Gn
F)n̂ given by
04661
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Gn
A5Jen

o 1Jen
e 1TeEn5Jen

o 1]nPe1TeEn ,

Gn
F5Jmn

o 1Jmn
e 1TmHn5Jmn

o 1]nPm1TmHn . ~30!

Once the sources are scalarized, the solution is foun
terms of the wave potentials (Amn ,Fen) and their sources
(Gn

A ,Gn
F). The field can easily be computed from the pote

tials. Using Eq.~13!, we obtain the following expressions fo
the now scalarized problem

En52TmAmn2]nF1En ,

Hn52TeFen2]nC1Hn ,

Et52“tF2“t3Fenn̂,

Ht52“tC1“t3Amnn̂, ~31!

where the scalar potentialsF andC are calculated according
to

2TeF5]nAmn1Pe ,

2TmC5]nFen1Pm . ~32!

Equivalently, if Eq.~14! is used, the result is given by

TeEn52“t
2Amn2Jen

o ,

TmHn52“t
2Fen2Jmn

o ,

TeEt5“t ]nAmn2“t3 TeFen n̂1“tPe ,

TmHt5“t ]nFen1“t3 TmAmnn̂1“tPm . ~33!

Notice that the secondary equivalent currentsJmn
e

5]nPm andJen
e 5]nPe are part of the potential sources an

therefore, they are active~radiating! sources. The portions o
the original transversal currents corresponding to (2“tPe)
and (2“tPm) have been effectively eliminated as nonrad
ating sources, and they affect the transversal field com
nents only locally as seen in the final two equations of E
~33!.

It is important to note that the equivalent source transf
mations are independent of the medium; their defining d
ferential equations~28! and ~29! do not contain any of the

FIG. 1. Distribution of the original magnetic current density
the planex50.
4-5
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FIG. 2. Planar distribution of the equivalent potential sources (Gx
A ,Gx

F) at time t5100Dt: Gx
A in the planex50; Gx

F in the planex
50.5Dh.
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constitutive parameterse, m, se , and sm . The scalarized
description obtained here for the case of transient EM pr
lems in an isotropic, nonhomogeneous, lossy medium i
agreement with the frequency-domain analysis of a non
mogeneous uniaxial medium presented in Refs.@8,16#, after
appropriate identifications and specializations are carried
Such an agreement is an important verification since
Hertz potential technique proposed in Refs.@8,16# achieves
simultaneous field and source scalarization using a diffe
mathematical approach.

IV. ILLUSTRATIVE NUMERICAL EXAMPLE

The theory of potential sources and source scalarizatio
illustrated by the EM pulse radiation of an asymmetrical lo
of magnetic currents in a plane orthogonal to the dis
guished axis, which is chosen asn̂5 x̂. All computations are
carried out directly in the time domain using the tim
domain wave potential algorithm@9#, which treats the wave
equations in Eq.~23! with an explicit central finite-difference
discretization scheme. The original magnetic currentsJmt

o are
in the planex50 such that~see Fig. 1!

“t3Jmt
o Þ0, “t•Jmt

o Þ0. ~34!
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All Jmt
o components have the same Gaussian pulse de

dence on time:

g~ t !5exp@2a~ t2t0!2#, ~35!

wherea andt0 are numerical constants controlling the wid
and the position of the pulse along the time axis.

A reference~or original! solution is first obtained by ex
citing the electric potentialsFey andFez with their respective
sources,Jmy

o andJmz
o . From them, the original field (Eo,Ho)

is calculated according to Eq.~14!. The wave form of each
component of the original field is recorded at several lo
tions in order to be compared with the wave form of t
respective field component generated by the pair of equ
lent potential sources (Gx

A ,Gx
F) x̂. The planar distribution of

the equivalent potential sources (Gx
A ,Gx

F) is computed from
(Jmy

o ,Jmz
o ) using Eqs.~27!–~30!. In this particular example

we havePe50 andHn50 because the original set of cu
rents has no electric components.Gx

A andGx
F are the sources

of the wave potentials (Amx ,Fex) from which the equivalent
field (Ee,He) is calculated using Eq.~33!.

A snapshot of the distribution of (Gx
A ,Gx

F) in a quadrant
of the planex50 at t5100Dt is given in Fig. 2. Here,Dt
denotes the discretization step in time. Because of the s
chronous behavior in time of allJmt

o components, the
FIG. 3. Distribution of the wave potentials generated by the equivalent potential sources (Gx
A ,Gx

F) at time t5170Dt: Amx in the plane
x50; Fmx in the planex50.5Dh.
4-6
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relative-to-maximum distribution of (Gx
A ,Gx

F) in space re-
mains constant in time. The (Gx

A ,Gx
F) dependence on time i

reflected only by a factor ofg(t) applied to the source valu
at each point in space. A snapshot of the potential p
(Amx ,Fex) distribution in space att5170Dt is shown in Fig.
3. In Figs. 2 and 3, the magnetic potentialAmx and its sources
are plotted in the planex50, which is the plane of the origi
nal magnetic loop. The electric potentialFex and its sources
are calculated at points which are displaced by half a spa
step,Dh/2 , along each axis@9#, with respect to the points a
which Amx is calculated. That is why theFex and theGx

F

distributions are plotted in the planex50.5Dh. In this par-
ticular example,Fex50 andGx

F50 in the planex50, which
is an electric wall.

Figure 4 shows a comparison between the wave form
the Hy

o component of the original field and theHy
e compo-

nent of the equivalent field generated by the equivalent
tential sourcesGx

A and Gx
F . The observation point is awa

from the sources, at an elevation angle ofu545°. The two
wave forms are practically indistinguishable from each oth
The maximum relative differenceu(Hy

o2Hy
e)/Hy

ou is below
1029 when double precision computation is used. It sho
excellent agreement bearing in mind the finite-difference
ture of the algorithm and the numerical~nonphysical! reflec-
tions from the absorbing boundary conditions.

Figure 5 shows a similar comparison only that this tim

FIG. 4. Comparison of the wave forms ofHy
o andHy

e generated
by the original magnetic loop (Jmy

o ,Jmz
o ), and by the equivalen

potential sources (Gx
A ,Gx

F).
is

04661
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the field component is recorded right inside the source lo
tion as shown in the figure inset. Figures 4 and 5 are rep
sentative of the behavior of all field components at all obs
vation points. Excellent match of original and equivale
fields is observed everywhere, inside and outside the volu
of the original and the equivalent sources.

V. CONCLUSION

The magnetic loop example illustrates very well the co
cept of equivalent transformation of transversal currents i
longitudinal electromagnetic sources obtained in the form
planar distributions. It shows that the field equivalence
preserved everywhere, the volume of the equivalent sou
included. The source scalarization technique is in fact a v
useful tool when integrated with a computational algorith
such as the time domain wave potential technique@9#. It
allows the solution of problems involving sources of diffe
ent direction, complex boundary shapes and various type
material nonhomogeneities in terms of only two scalar fu
tions, the scalar wave potentials. This is done through
scalarization of all explicit and implicit EM sources, the la
ter being induced at material nonhomogeneities and cond
ing edges. Thus, throughout the computational volume,
analysis is carried out in terms of a single vector poten
pair (Amn ,Fen)n̂ of fixed directionn̂.

FIG. 5. Comparison of the wave forms ofEx
o andEx

e generated
by the original magnetic loop (Jmy

o ,Jmz
o ), and by the equivalent

potential sources (Gx
A ,Gx

F).
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